Matrix elements of irreducible representations of SU(n+1) x SU(n+1) and multivariable matrix-valued orthogonal polynomials

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2017-16
dc.contributor.authorKoelink, Erik
dc.contributor.authorvan Pruijssen, Maarten
dc.contributor.authorRomán, Pablo Manuel
dc.date.accessioned2017-11-23T21:32:09Z
dc.date.available2019-06-28T08:08:56Z
dc.date.issued2017
dc.description.abstractIn Part 1 we study the spherical functions on compact symmetric pairs of arbitrary rank under a suitable multiplicity freeness assumption and additional conditions on the branching rules. The spherical functions are taking values in the spaces of linear operators of a finite dimensional representation of the subgroup, so the spherical functions are matrix-valued. Under these assumptions these functions can be described in terms of matrix-valued orthogonal polynomials in several variables, where the number of variables is the rank of the compact symmetric pair. Moreover, these polynomials are uniquely determined as simultaneous eigenfunctions of a commutative algebra of differential operators. In Part 2 we verify that the group case SU(n+1) meets all the conditions that we impose in Part 1. For any kEN0 we obtain families of orthogonal polynomials in n variables with values in theNxN-matrices, where N=((n+k)/k). The case k=0 leads to the classical Heckman-Opdam polynomials of type An with geometric parameter. For k=1 we obtain the most complete results. In this case we give an explicit expression of the matrix weight, which we show to be irreducible whenever n>=2. We also give explicit expressions of the spherical functions that determine the matrix weight for k = 1. These expressions are used to calculate the spherical functions that determine the matrix weight for general k up to invertible upper-triangular matrices. This generalizes and gives a new proof of a formula originally obtained by Koornwinder for the case n = 1. The commuting family of differential operators that have the matrix-valued polynomials as simultaneous eigenfunctions contains an element of order one. We give explicit formulas for differential operators of order one and two for (n; k) equal to (2; 1) and (3; 1).eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2653
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2616
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2017-16
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleMatrix elements of irreducible representations of SU(n+1) x SU(n+1) and multivariable matrix-valued orthogonal polynomialseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2017_16.pdf
Size:
1.64 MB
Format:
Adobe Portable Document Format
Description: