Learning Theory and Approximation

dc.bibliographicCitation.firstPage1895
dc.bibliographicCitation.lastPage1948
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume31
dc.contributor.otherSmale, Steve
dc.contributor.otherZhou, Ding-Xuan
dc.date.accessioned2023-12-15T09:04:49Z
dc.date.available2023-12-15T09:04:49Z
dc.date.issued2012
dc.description.abstractLearning theory studies data structures from samples and aims at understanding unknown function relations behind them. This leads to interesting theoretical problems which can be often attacked with methods from Approximation Theory. This workshop - the second one of this type at the MFO - has concentrated on the following recent topics: Learning of manifolds and the geometry of data; sparsity and dimension reduction; error analysis and algorithmic aspects, including kernel based methods for regression and classification; application of multiscale aspects and of refinement algorithms to learning.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13010
dc.identifier.urihttps://doi.org/10.34657/12040
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2012-31
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleLearning Theory and Approximationeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Learning Theory and Approximation, 24 Jun - 30 Jun 2012, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2012_31.pdf
Size:
479.06 KB
Format:
Adobe Portable Document Format
Description: