Accelerated variance-reduced methods for saddle-point problems

dc.bibliographicCitation.firstPage100048
dc.bibliographicCitation.journalTitleEURO journal on computational optimizationeng
dc.bibliographicCitation.volume10
dc.contributor.authorBorodich, Ekaterina
dc.contributor.authorTominin, Vladislav
dc.contributor.authorTominin, Yaroslav
dc.contributor.authorKovalev, Dmitry
dc.contributor.authorGasnikov, Alexander
dc.contributor.authorDvurechensky, Pavel
dc.date.accessioned2023-03-01T09:28:12Z
dc.date.available2023-03-01T09:28:12Z
dc.date.issued2022
dc.description.abstractWe consider composite minimax optimization problems where the goal is to find a saddle-point of a large sum of non-bilinear objective functions augmented by simple composite regularizers for the primal and dual variables. For such problems, under the average-smoothness assumption, we propose accelerated stochastic variance-reduced algorithms with optimal up to logarithmic factors complexity bounds. In particular, we consider strongly-convex-strongly-concave, convex-strongly-concave, and convex-concave objectives. To the best of our knowledge, these are the first nearly-optimal algorithms for this setting.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11625
dc.identifier.urihttp://dx.doi.org/10.34657/10658
dc.language.isoeng
dc.publisherAmsterdam : Elsevier
dc.relation.doihttps://doi.org/10.1016/j.ejco.2022.100048
dc.relation.essn2192-4414
dc.relation.issn2192-4406
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc510
dc.subject.otherAccelerated algorithmseng
dc.subject.otherComposite optimizationeng
dc.subject.otherMinimax optimizationeng
dc.subject.otherSaddle-point problemeng
dc.subject.otherStochastic variance-reduced algorithmseng
dc.titleAccelerated variance-reduced methods for saddle-point problemseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectMathematikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2-0-S2192440622000247-main.pdf
Size:
494.07 KB
Format:
Adobe Portable Document Format
Description:
Collections