Randomness is Natural - an Introduction to Regularisation by Noise

dc.bibliographicCitation.seriesTitleSnapshots of Modern Mathematics from Oberwolfacheng
dc.bibliographicCitation.volume2/2024
dc.contributor.authorDjurdjevac, Ana
dc.contributor.authorElad Altman, Henri
dc.contributor.authorRosati, Tommaso
dc.date.accessioned2024-10-16T13:55:11Z
dc.date.available2024-10-16T13:55:11Z
dc.date.issued2024
dc.description.abstractDifferential equations make predictions on the future state of a system given the present. In order to get a sensible prediction, sometimes it is necessary to include randomness in differential equations, taking microscopic effects into account. Surprisingly, despite the presence of randomness, our probabilistic prediction of future states is stable with respect to changes in the surrounding environment, even if the original prediction was unstable. This snapshot will unveil the core mathematical mechanism underlying this "regularisation by noise" phenomenon.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16861
dc.identifier.urihttps://doi.org/10.34657/15883
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH
dc.relation.doihttps://doi.org/10.14760/SNAP-2024-002-EN
dc.relation.essn2626-1995
dc.rights.licenseCC BY-SA 4.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc510
dc.subject.otherProbability Theory and Statistics
dc.titleRandomness is Natural - an Introduction to Regularisation by Noise
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
snapshot-2024-002.pdf
Size:
531.88 KB
Format:
Adobe Portable Document Format
Description: