A Versatile Surface Bioengineering Strategy Based on Mussel-Inspired and Bioclickable Peptide Mimic

dc.bibliographicCitation.firstPage7236946eng
dc.bibliographicCitation.volume2020eng
dc.contributor.authorXiao, Yu
dc.contributor.authorWang, Wenxuan
dc.contributor.authorTian, Xiaohua
dc.contributor.authorTan, Xing
dc.contributor.authorYang, Tong
dc.contributor.authorGao, Peng
dc.contributor.authorXiong, Kaiqing
dc.contributor.authorTu, Qiufen
dc.contributor.authorWang, Miao
dc.contributor.authorMaitz, Manfred F.
dc.contributor.authorHuang, Nan
dc.contributor.authorPan, Guoqing
dc.contributor.authorYang, Zhilu
dc.date.accessioned2022-04-25T07:43:32Z
dc.date.available2022-04-25T07:43:32Z
dc.date.issued2020
dc.description.abstractIn this work, we present a versatile surface engineering strategy by the combination of mussel adhesive peptide mimicking and bioorthogonal click chemistry. The main idea reflected in this work derived from a novel mussel-inspired peptide mimic with a bioclickable azide group (i.e., DOPA4-azide). Similar to the adhesion mechanism of the mussel foot protein (i.e., covalent/noncovalent comediated surface adhesion), the bioinspired and bioclickable peptide mimic DOPA4-azide enables stable binding on a broad range of materials, such as metallic, inorganic, and organic polymer substrates. In addition to the material universality, the azide residues of DOPA4-azide are also capable of a specific conjugation of dibenzylcyclooctyne- (DBCO-) modified bioactive ligands through bioorthogonal click reaction in a second step. To demonstrate the applicability of this strategy for diversified biofunctionalization, we bioorthogonally conjugated several typical bioactive molecules with DBCO functionalization on different substrates to fabricate functional surfaces which fulfil essential requirements of biomedically used implants. For instance, antibiofouling, antibacterial, and antithrombogenic properties could be easily applied to the relevant biomaterial surfaces, by grafting antifouling polymer, antibacterial peptide, and NO-generating catalyst, respectively. Overall, the novel surface bioengineering strategy has shown broad applicability for both the types of substrate materials and the expected biofunctionalities. Conceivably, the “clean” molecular modification of bioorthogonal chemistry and the universality of mussel-inspired surface adhesion may synergically provide a versatile surface bioengineering strategy for a wide range of biomedical materials.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8802
dc.identifier.urihttps://doi.org/10.34657/7840
dc.language.isoengeng
dc.publisher[Beijing] : China Association for Science and Technologyeng
dc.relation.doihttps://doi.org/10.34133/2020/7236946
dc.relation.essn2639-5274
dc.relation.ispartofseriesResearch : official journal of CAST : a Science Partner journal 2020 (2020)eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc333.7eng
dc.subject.ddc500eng
dc.subject.ddc600eng
dc.titleA Versatile Surface Bioengineering Strategy Based on Mussel-Inspired and Bioclickable Peptide Mimiceng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleResearch : official journal of CAST : a Science Partner journaleng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectUmweltwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_versatile_surface_Bioengineering_Strategy.pdf
Size:
1.86 MB
Format:
Adobe Portable Document Format
Description: