Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2015-06
dc.contributor.authorBurban, Igor
dc.contributor.authorDrozd, Yuriy
dc.date.available2019-06-28T08:12:30Z
dc.date.issued2015
dc.description.abstractIn this article we develop a new method to deal with maximal Cohen{ Macaulay modules over non{isolated surface singularities. In particular, we give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen{Macaulay modules. Next, we prove that the degenerate cusp singularities have tame Cohen{Macaulay representation type. Our approach is illustrated on the case of kJx; y; zK=(xyz) as well as several other rings. This study of maximal Cohen{Macaulay modules over non{isolated singularities leads to a new class of problems of linear algebra, which we call representations of decorated bunches of chains. We prove that these matrix problems have tame representation type and describe the underlying canonical forms.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2652
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2873
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2015-06
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleMaximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problemseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2015_06.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description: