Varieties of invariant subspaces given by Littlewood-Richardson tableau

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2014-01
dc.contributor.authorKosakowska, Justyna
dc.contributor.authorSchmidmeier, Markus
dc.date.available2019-06-28T08:13:51Z
dc.date.issued2014
dc.description.abstractGiven partitions α,β,γ, the short exact sequences 0→Nα→Nβ→Nγ→0 of nilpotent linear operators of Jordan types α,β,γ, respectively, define a constructible subset Vαβ,γ of an affine variety. Geometrically, the varieties Vαβ,γ are of particular interest as they occur naturally and since they typically consist of several irreducible components. In fact, each Littlewood-Richardson tableaux Γ of shape (α,β,γ) contributes one irreducible component V¯¯¯¯Γ. We consider the partial order Γ≤∗closureΓ~ on LR-tableaux which is the transitive closure of the relation given by VΓ~∩VΓ¯¯¯¯¯¯≠0. In this paper we compare the closure-relation with partial orders given by algebraic, combinatorial and geometric conditions. In the case where the parts of α are at most two, all those partial orders are equivalent. We discuss how the orders differ in general.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3467
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2948
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2014-01
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherDegenerationseng
dc.subject.otherpartial orderseng
dc.subject.otherHall polynomialseng
dc.subject.othernilpotent operatorseng
dc.subject.otherinvariant subspaceseng
dc.subject.otherLittlewood-Richardson tableauxeng
dc.titleVarieties of invariant subspaces given by Littlewood-Richardson tableaueng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2014_01.pdf
Size:
446.05 KB
Format:
Adobe Portable Document Format
Description: