Statistical and Computational Aspects of Learning with Complex Structure

dc.bibliographicCitation.firstPage1309
dc.bibliographicCitation.lastPage1356
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume22
dc.contributor.otherReiß, Markus
dc.contributor.otherRigollet, Philippe
dc.date.accessioned2023-12-15T10:06:49Z
dc.date.available2023-12-15T10:06:49Z
dc.date.issued2019
dc.description.abstractThe recent explosion of data that is routinely collected has led scientists to contemplate more and more sophisticated structural assumptions. Understanding how to harness and exploit such structure is key to improving the prediction accuracy of various statistical procedures. The ultimate goal of this line of research is to develop a set of tools that leverage underlying complex structures to pool information across observations and ultimately improve statistical accuracy as well as computational efficiency of the deployed methods. The workshop focused on recent developments in regression and matrix estimation under various complex constraints such as physical, computational, privacy, sparsity or robustness. Optimal-transport based techniques for geometric data analysis were also a main topic of the workshop.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13408
dc.identifier.urihttps://doi.org/10.34657/12438
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2019-22
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleStatistical and Computational Aspects of Learning with Complex Structureeng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventWorkshop Statistical and Computational Aspects of Learning with Complex Structure, 05 May - 11 May 2019, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2019_22.pdf
Size:
3.61 MB
Format:
Adobe Portable Document Format
Description: