Mini-Workshop: Recent Progress in Path Integration on Graphs and Manifolds

dc.bibliographicCitation.firstPage1003
dc.bibliographicCitation.lastPage1042
dc.bibliographicCitation.seriesTitleOberwolfach reports : OWReng
dc.bibliographicCitation.volume16
dc.contributor.otherKeller, Matthias
dc.contributor.otherKuwada, Kazumasa
dc.contributor.otherThalmaier, Anton
dc.date.accessioned2023-12-15T10:06:48Z
dc.date.available2023-12-15T10:06:48Z
dc.date.issued2019
dc.description.abstractEver since Richard Feynman's PhD thesis, path integrals have played a decisive role in mathematical physics. While it is well-known that such formulae can hold only formally, it was Mark Kac who realized that by replacing the unitary group by the heat semigroup, one obtains well-defined and rigorous formulae. Following this pioneering work, Feynman-Kac path integral formulae have been adapted to several situations and generalized into several directions providing the central focus of this workshop.eng
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/13400
dc.identifier.urihttps://doi.org/10.34657/12430
dc.language.isoeng
dc.publisherZürich : EMS Publ. Houseeng
dc.relation.doihttps://doi.org/10.14760/OWR-2019-16
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.gndKonferenzschriftger
dc.titleMini-Workshop: Recent Progress in Path Integration on Graphs and Manifoldseng
dc.typeArticleeng
dc.typeTexteng
dcterms.eventMini-Workshop: Recent Progress in Path Integration on Graphs and Manifolds, 07 Apr - 13 Apr 2019, Oberwolfach
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeZeitschriftenartikel
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWR_2019_16.pdf
Size:
400.39 KB
Format:
Adobe Portable Document Format
Description: