Solving quadratic equations in many variables

dc.bibliographicCitation.seriesTitleSnapshots of Modern Mathematics from Oberwolfacheng
dc.bibliographicCitation.volume12/2017
dc.contributor.authorTignol, Jean-Pierre
dc.date.accessioned2022-08-05T07:45:31Z
dc.date.available2022-08-05T07:45:31Z
dc.date.issued2017
dc.description.abstractFields are number systems in which every linear equation has a solution, such as the set of all rational numbers Q or the set of all real numbers R. All fields have the same properties in relation with systems of linear equations, but quadratic equations behave differently from field to field. Is there a field in which every quadratic equation in five variables has a solution, but some quadratic equation in four variables has no solution? The answer is in this snapshot.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9888
dc.identifier.urihttp://dx.doi.org/10.34657/8926
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH
dc.relation.doihttps://doi.org/10.14760/SNAP-2017-012-EN
dc.relation.essn2626-1995
dc.rights.licenseCC BY-SA 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/eng
dc.subject.ddc510
dc.subject.otherAlgebra and Number Theoryeng
dc.titleSolving quadratic equations in many variableseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent9 S.
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2017-12.pdf
Size:
378.8 KB
Format:
Adobe Portable Document Format
Description: