1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One-Pot Chemical Vapor Deposition Synthesis

dc.bibliographicCitation.firstPage2101086eng
dc.bibliographicCitation.issue27eng
dc.bibliographicCitation.volume31eng
dc.contributor.authorNajafidehaghani, Emad
dc.contributor.authorGan, Ziyang
dc.contributor.authorGeorge, Antony
dc.contributor.authorLehnert, Tibor
dc.contributor.authorNgo, Gia Quyet
dc.contributor.authorNeumann, Christof
dc.contributor.authorBucher, Tobias
dc.contributor.authorStaude, Isabelle
dc.contributor.authorKaiser, David
dc.contributor.authorVogl, Tobias
dc.contributor.authorHübner, Uwe
dc.contributor.authorKaiser, Ute
dc.contributor.authorEilenberger, Falk
dc.contributor.authorTurchanin, Andrey
dc.date.accessioned2021-11-25T10:32:29Z
dc.date.available2021-11-25T10:32:29Z
dc.date.issued2021
dc.description.abstractLateral heterostructures of dissimilar monolayer transition metal dichalcogenides provide great opportunities to build 1D in-plane p–n junctions for sub-nanometer thin low-power electronic, optoelectronic, optical, and sensing devices. Electronic and optoelectronic applications of such p–n junction devices fabricated using a scalable one-pot chemical vapor deposition process yielding MoSe2-WSe2 lateral heterostructures are reported here. The growth of the monolayer lateral heterostructures is achieved by in situ controlling the partial pressures of the oxide precursors by a two-step heating protocol. The grown lateral heterostructures are characterized structurally and optically using optical microscopy, Raman spectroscopy/microscopy, and photoluminescence spectroscopy/microscopy. High-resolution transmission electron microscopy further confirms the high-quality 1D boundary between MoSe2 and WSe2 in the lateral heterostructure. p–n junction devices are fabricated from these lateral heterostructures and their applicability as rectifiers, solar cells, self-powered photovoltaic photodetectors, ambipolar transistors, and electroluminescent light emitters are demonstrated. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbHeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7482
dc.identifier.urihttps://doi.org/10.34657/6529
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/adfm.202101086
dc.relation.essn1099-0712
dc.relation.essn1616-3028
dc.relation.ispartofseriesAdvanced Functional Materials 31 (2021), Nr. 27eng
dc.rights.licenseCC BY-NC-ND 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.subject2D deviceseng
dc.subjectlateral heterostructureseng
dc.subjectlight-emitting diodeeng
dc.subjectp–n junctioneng
dc.subjecttransition metal dichalcogenides monolayerseng
dc.subject.ddc620eng
dc.subject.ddc540eng
dc.subject.ddc530eng
dc.title1D p–n Junction Electronic and Optoelectronic Devices from Transition Metal Dichalcogenide Lateral Heterostructures Grown by One-Pot Chemical Vapor Deposition Synthesiseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleAdvanced Functional Materialseng
tib.accessRightsopenAccesseng
wgl.contributorIPHTeng
wgl.subjectIngenieurwissenschafteneng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.202101086.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format
Description: