On the absence of percolation in a line-segment based lilypond model

dc.contributor.authorHirsch, Christian
dc.date.accessioned2016-07-27T16:18:00Z
dc.date.available2019-06-28T08:21:10Z
dc.date.issued2013
dc.description.abstractWe prove the absence of percolation in a directed Poisson-based random geometric graph with out-degree 1. This graph is an anisotropic variant of a line-segment based lilypond model obtained from an asymmetric growth protocol, which has been proposed by Daley and Last. In order to exclude backward percolation, one may proceed as in the lilypond model of growing disks and apply the mass-transport principle. Concerning the proof of the absence of forward percolation, we present a novel argument that is based on the method of sprinkling.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3279
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1301.7279
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherLilypond modeleng
dc.subject.othermass-transport principleeng
dc.subject.otherpercolationeng
dc.subject.otherrandom geometric grapheng
dc.subject.othersprinklineng
dc.titleOn the absence of percolation in a line-segment based lilypond modeleng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections