A Pixel-wise Segmentation Model to Identify Bur Chervil (Anthriscus caucalis M. Bieb.) Within Images from a Cereal Cropping Field

dc.bibliographicCitation.date2023
dc.bibliographicCitation.firstPage25
dc.bibliographicCitation.journalTitleGesunde Pflanzeneng
dc.bibliographicCitation.lastPage36
dc.bibliographicCitation.volume75
dc.contributor.authorKarimi, Hadi
dc.contributor.authorNavid, Hossein
dc.contributor.authorDammer, Karl-Heinz
dc.date.accessioned2023-02-06T10:22:45Z
dc.date.available2023-02-06T10:22:45Z
dc.date.issued2022
dc.description.abstractBecause of insufficient effectiveness after herbicide application in autumn, bur chervil (Anthriscus caucalis M. Bieb.) is often present in cereal fields in spring. A second reason for spreading is the warm winter in Europe due to climate change. This weed continues to germinate from autumn to spring. To prevent further spreading, a site-specific control in spring is reasonable. Color imagery would offer cheap and complete monitoring of entire fields. In this study, an end-to-end fully convolutional network approach is presented to detect bur chervil within color images. The dataset consisted of images taken at three sampling dates in spring 2018 in winter wheat and at one date in 2019 in winter rye from the same field. Pixels representing bur chervil were manually annotated in all images. After a random image augmentation was done, a Unet-based convolutional neural network model was trained using 560 (80%) of the sub-images from 2018 (training images). The power of the trained model at the three different sampling dates in 2018 was evaluated at 141 (20%) of the manually annotated sub-images from 2018 and all (100%) sub-images from 2019 (test images). Comparing the estimated and the manually annotated weed plants in the test images the Intersection over Union (Jaccard index) showed mean values in the range of 0.9628 to 0.9909 for the three sampling dates in 2018, and a value of 0.9292 for the one date in 2019. The Dice coefficients yielded mean values in the range of 0.9801 to 0.9954 for 2018 and a value of 0.9605 in 2019.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11279
dc.identifier.urihttp://dx.doi.org/10.34657/10315
dc.language.isoeng
dc.publisherBerlin ; Heidelberg : Springer
dc.relation.doihttps://doi.org/10.1007/s10343-022-00764-6
dc.relation.essn1439-0345
dc.relation.issn0367-4223
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc630
dc.subject.ddc640
dc.subject.ddc580
dc.subject.ddc333.7
dc.subject.otherBur chervileng
dc.subject.otherDeep learningeng
dc.subject.otherImage analysiseng
dc.subject.otherPrecision farmingeng
dc.subject.otherRyeeng
dc.subject.otherWheateng
dc.subject.otherBildverarbeitungger
dc.subject.otherHunds-Kerbelger
dc.subject.otherMaschinelles Lernenger
dc.subject.otherPräziser Pflanzenschutzger
dc.subject.otherRoggenger
dc.subject.otherWeizenger
dc.titleA Pixel-wise Segmentation Model to Identify Bur Chervil (Anthriscus caucalis M. Bieb.) Within Images from a Cereal Cropping Fieldeng
dc.titleEin pixel-basiertes Segmentierungsmodell zur Identifizierung von Hunds-Kerbel (Anthriscus caucalis M. Bieb.) in Farbbildern eines Getreidefeldesger
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorATB
wgl.subjectBiowissenschaften/Biologieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s10343-022-00764-6.pdf
Size:
4.56 MB
Format:
Adobe Portable Document Format
Description: