Patterning and control of the nanostructure in plasma thin films with acoustic waves: mechanical vs. electrical polarization effects

dc.bibliographicCitation.firstPage515eng
dc.bibliographicCitation.issue2eng
dc.bibliographicCitation.journalTitleMaterials Horizonseng
dc.bibliographicCitation.lastPage524eng
dc.bibliographicCitation.volume8eng
dc.contributor.authorGarcía-Valenzuela, Aurelio
dc.contributor.authorFakhfouri, Armaghan
dc.contributor.authorOliva-Ramírez, Manuel
dc.contributor.authorRico-Gavira, Victor
dc.contributor.authorRojas, Teresa Cristina
dc.contributor.authorAlvarez, Rafael
dc.contributor.authorMenzel, Siegfried B.
dc.contributor.authorPalmero, Alberto
dc.contributor.authorWinkler, Andreas
dc.contributor.authorGonzález-Elipe, Agustín R.
dc.date.accessioned2022-03-28T06:21:56Z
dc.date.available2022-03-28T06:21:56Z
dc.date.issued2021
dc.description.abstractNanostructuration and 2D patterning of thin films are common strategies to fabricate biomimetic surfaces and components for microfluidic, microelectronic or photonic applications. This work presents the fundamentals of a surface nanotechnology procedure for laterally tailoring the nanostructure and crystalline structure of thin films that are plasma deposited onto acoustically excited piezoelectric substrates. Using magnetron sputtering as plasma technique and TiO2 as case example, it is demonstrated that the deposited films depict a sub-millimetre 2D pattern that, characterized by large lateral differences in nanostructure, density (up to 50%), thickness, and physical properties between porous and dense zones, reproduces the wave features distribution of the generated acoustic waves (AW). Simulation modelling of the AW propagation and deposition experiments carried out without plasma and under alternative experimental conditions reveal that patterning is not driven by the collision of ad-species with mechanically excited lattice atoms of the substrate, but emerges from their interaction with plasma sheath ions locally accelerated by the AW-induced electrical polarization field developed at the substrate surface and growing film. The possibilities of the AW activation as a general approach for the tailored control of nanostructure, pattern size, and properties of thin films are demonstrated through the systematic variation of deposition conditions and the adjustment of AW operating parameters.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/8401
dc.identifier.urihttps://doi.org/10.34657/7439
dc.language.isoengeng
dc.publisherCambridge : RSC Publ.eng
dc.relation.doihttps://doi.org/10.1039/d0mh01540g
dc.relation.essn2051-6355
dc.rights.licenseCC BY-NC 3.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/eng
dc.subject.ddc540eng
dc.subject.otherAcoustic waveseng
dc.subject.otherBiomimeticseng
dc.subject.otherDepositioneng
dc.subject.otherMicroelectronicseng
dc.subject.otherNanostructureseng
dc.subject.otherOxide mineralseng
dc.subject.otherPlasma sheathseng
dc.subject.otherPolarizationeng
dc.subject.otherSubstrateseng
dc.subject.otherTitanium dioxideeng
dc.subject.otherCrystalline structureeng
dc.subject.otherDeposition conditionseng
dc.subject.otherDeposition experimentseng
dc.subject.otherElectrical polarizationeng
dc.subject.otherExperimental conditionseng
dc.subject.otherOperating parameterseng
dc.subject.otherPhotonic applicationeng
dc.subject.otherPiezoelectric substrateseng
dc.subject.otherThin filmseng
dc.titlePatterning and control of the nanostructure in plasma thin films with acoustic waves: mechanical vs. electrical polarization effectseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectChemieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Patterning_and_control_of_the_nanostructure.pdf
Size:
9.09 MB
Format:
Adobe Portable Document Format
Description:
Collections