Euler reflexion formulas for motivic multiple zeta functions

Loading...
Thumbnail Image

Date

Volume

2015-17

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

We introduce a new notion of *-product of two integrable series with coefficients in distinct Grothendieck rings of algebraic varieties, preserving the integrability and commuting with the limit of rational series. In the same context, we define a motivic multiple zeta function with respect to an ordered family of regular functions, which is integrable and connects closely to Denef-Loeser's motivic zeta functions. We also show that the *-product is associative in the class of motivic multiple zeta functions. Furthermore, a version of the Euler re exion formula for motivic zeta functions is nicely formulated to deal with the *-product and motivic multiple zeta functions, and it is proved for both univariate and multivariate cases by using the theory of arc spaces. As an application, taking the limit for the motivic Euler re exion formula we recover the well known motivic Thom-Sebastiani theorem.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.