Positivity of the T-system cluster algebra

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2009-21
dc.contributor.authorDi Francesco, Philippe
dc.contributor.authorKedem, Rinat
dc.date.available2019-06-28T08:07:53Z
dc.date.issued2009
dc.description.abstractWe give the path model solution for the cluster algebra variables of the Ar T-system with generic boundary conditions. The solutions are partition functions of (strongly) non-intersecting paths on weighted graphs. The graphs are the same as those constructed for the Q-system in our earlier work, and depend on the seed or initial data in terms of which the solutions are given. The weights are “timedependent” where “time” is the extra parameter which distinguishes the T-system from the Q-system, usually identified as the spectral parameter in the context of representation theory. The path model is alternatively described on a graph with non-commutative weights, and cluster utations are interpreted as non-commutative continued fraction rearrangements. As a consequence, the solution is a positive Laurent polynomial of the seed data.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3010
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2538
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2009-21
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.titlePositivity of the T-system cluster algebra
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2009_21.pdf
Size:
403.06 KB
Format:
Adobe Portable Document Format
Description: