A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity 2^O(n log n)

dc.contributor.authorHildebrand, Robert
dc.contributor.authorKöppe, Matthias
dc.date.accessioned2016-07-27T16:18:01Z
dc.date.available2019-06-28T08:21:58Z
dc.date.issued2010
dc.description.abstractWe study the integer minimization of a quasiconvex polynomial with quasiconvex polynomial constraints. We propose a new algorithm that is an improvement upon the best known algorithm due to Heinz (Journal of Complexity, 2005). This improvement is achieved by applying a new modern Lenstra-type algorithm, finding optimal ellipsoid roundings, and considering sparse encodings of polynomials. For the bounded case, our algorithm attains a time-complexity of s (r l M d)^{O(1)} 2^{2n log_2(n) + O(n)} when M is a bound on the number of monomials in each polynomial and r is the binary encoding length of a bound on the feasible region. In the general case, s l^{O(1)} d^{O(n)} 2^{2n log_2(n) +O(n)}. In each we assume d>= 2 is a bound on the total degree of the polynomials and l bounds the maximum binary encoding size of the input.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3310
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1006.4661
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherOptimization and Control. Data Structures and Algorithmseng
dc.titleA new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity 2^O(n log n)eng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections