The index of singular zeros of harmonic mappings of anti-analytic degree one

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2017-03
dc.contributor.authorLuce, Robert
dc.contributor.authorSète, Olivier
dc.date.available2019-06-28T08:06:06Z
dc.date.issued2017
dc.description.abstractWe study harmonic mappings of the form f(z)=h(z)−z¯¯¯, where h is an analytic function. In particular we are interested in the index (a generalized multiplicity) of the zeros of such functions. Outside the critical set of f, where the Jacobian of f is non-vanishing, it is known that this index has similar properties as the classical multiplicity of zeros of analytic functions. Little is known about the index of zeros on the critical set, where the Jacobian vanishes; such zeros are called singular zeros. Our main result is a characterization of the index of singular zeros, which enables one to determine the index directly from the power series of h.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3342
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2374
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2017-03
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherHarmonic mappingseng
dc.subject.otherPoincaré indexeng
dc.subject.othersingular zeroeng
dc.subject.othermultiplicityeng
dc.subject.othercritical seteng
dc.titleThe index of singular zeros of harmonic mappings of anti-analytic degree oneeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2017_03.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
Description: