Second main theorems and unicity of meromorphic mappings with moving hypersurfaces
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2011-38 | |
dc.contributor.author | Si, Duc Quang | |
dc.date.available | 2019-06-28T08:03:30Z | |
dc.date.issued | 2011 | |
dc.description.abstract | In this article, we establish some new second main theorems for meromorphic mappings of Cm into Pn(C) and moving hypersurfaces with truncated counting functions. As an application, we prove a uniqueness theorem for these mappings sharing few moving hypersurfaces without counting multiplicity. This result is an improvement of the results of Dulock - Min Ru [2] and Dethloff - Tan [4]. Moreover the meromorphic mappings maybe algebraically degenerate. | |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/3123 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2048 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | |
dc.relation.doi | https://doi.org/10.14760/OWP-2011-38 | |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.subject.ddc | 510 | |
dc.subject.other | Second main theorem | eng |
dc.subject.other | meromorphic mapping | eng |
dc.subject.other | moving hypersurface | eng |
dc.subject.other | uniqueness problem | eng |
dc.subject.other | truncated multiplicity | eng |
dc.title | Second main theorems and unicity of meromorphic mappings with moving hypersurfaces | |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2011_38.pdf
- Size:
- 226.98 KB
- Format:
- Adobe Portable Document Format
- Description: