Second main theorems and unicity of meromorphic mappings with moving hypersurfaces

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2011-38
dc.contributor.authorSi, Duc Quang
dc.date.available2019-06-28T08:03:30Z
dc.date.issued2011
dc.description.abstractIn this article, we establish some new second main theorems for meromorphic mappings of Cm into Pn(C) and moving hypersurfaces with truncated counting functions. As an application, we prove a uniqueness theorem for these mappings sharing few moving hypersurfaces without counting multiplicity. This result is an improvement of the results of Dulock - Min Ru [2] and Dethloff - Tan [4]. Moreover the meromorphic mappings maybe algebraically degenerate.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3123
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2048
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2011-38
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.otherSecond main theoremeng
dc.subject.othermeromorphic mappingeng
dc.subject.othermoving hypersurfaceeng
dc.subject.otheruniqueness problemeng
dc.subject.othertruncated multiplicityeng
dc.titleSecond main theorems and unicity of meromorphic mappings with moving hypersurfaces
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2011_38.pdf
Size:
226.98 KB
Format:
Adobe Portable Document Format
Description: