Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding
Loading...
Date
2020
Volume
14
Issue
2
Journal
Electronic journal of statistics : EJS
Series Titel
Book Title
Publisher
Ithaca, NY : Cornell University Library
Link to publishers version
Abstract
In this work, we propose a way to construct Gaussian processes indexed by multidimensional distributions. More precisely, we tackle the problem of defining positive definite kernels between multivariate distributions via notions of optimal transport and appealing to Hilbert space embeddings. Besides presenting a characterization of radial positive definite and strictly positive definite kernels on general Hilbert spaces, we investigate the statistical properties of our theoretical and empirical kernels, focusing in particular on consistency as well as the special case of Gaussian distributions. A wide set of applications is presented, both using simulations and implementation with real data.
Description
Keywords
Citation
Bachoc, F., Suvorikova, A., Ginsbourger, D., Loubes, J.-M., & Spokoiny, V. (2020). Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding (Ithaca, NY : Cornell University Library). Ithaca, NY : Cornell University Library. https://doi.org//10.1214/20-EJS1725
Collections
License
CC BY 4.0 Unported