Geometric Structures in Group Theory (hybrid meeting)
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The conference focused on the use of geometric methods to study infinite groups and the interplay of group theory with other areas. One of the central techniques in geometric group theory is to study infinite discrete groups by their actions on nice, suitable spaces. These spaces often carry an interesting large-scale geometry, such as non-positive curvature or hyperbolicity in the sense of Gromov, or are equipped with rich geometric or combinatorial structure. From these actions one can investigate structural properties of the groups. This connection has become very prominent during the last years. In this context non-discrete topological groups, such as profinite groups or locally compact groups appear quite naturally. Likewise, analytic methods and operator theory play an increasing role in the area.
Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.