Spectral triples and finite summability on Cuntz-Krieger algebras

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2014-03
dc.contributor.authorKosakowska, Magnus
dc.contributor.authorSchmidmeier, Bram
dc.date.available2019-06-28T08:13:53Z
dc.date.issued2014
dc.description.abstractWe produce a variety of odd bounded Fredholm modules and odd spectral triples on Cuntz-Krieger algebras by means of realizing these algebras as "the algebra of functions on a non-commutative space" coming from a sub shift of finite type. We show that any odd K-homology class can be represented by such an odd bounded Fredholm module or odd spectral triple. The odd bounded Fredholm modules that are constructed are finitely summable. The spectral triples are θ-summable, although their phases will already on the level of analytic K-cycles be finitely summable bounded Fredholm modules. Using the unbounded Kasparov product, we exhibit a family of generalized spectral triples, related to work of Bellissard-Pearson, possessing mildly unbounded commutators, whilst still giving well defined K-homology classes.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3227
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2949
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2014-03
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleSpectral triples and finite summability on Cuntz-Krieger algebraseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2014_03.pdf
Size:
634.13 KB
Format:
Adobe Portable Document Format
Description: