Acoustic scattering from corners, edges and circular cones

dc.contributor.authorElschner, Johannes
dc.contributor.authorHu, Guanghui
dc.date.available2019-06-28T08:24:54Z
dc.date.issued2016
dc.description.abstractConsider the time-harmonic acoustic scattering from a bounded penetrable obstacle imbedded in an isotropic homogeneous medium. The obstacle is supposed to possess a circular conic point or an edge point on the boundary in three dimensions and a planar corner point in two dimensions. The opening angles of cones and edges are allowed to be any number in (0,2π)∖{π}. We prove that such an obstacle scatters any incoming wave non-trivially (i.e., the far field patterns cannot vanish identically), leading to the absence of real non-scattering wavenumbers. Local and global uniqueness results for the inverse problem of recovering the shape of a penetrable scatterers are also obtained using a single incoming wave. Our approach relies on the singularity analysis of the inhomogeneous Laplace equation in a cone.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3425
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1603.05186
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherInverse medium scatteringeng
dc.subject.otherHelmholtz equationeng
dc.subject.othernon-scattering wavenumberseng
dc.titleAcoustic scattering from corners, edges and circular coneseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections