Rates of convergence for extremes of geometric random variables and marked point processes

dc.contributor.authorCipriani, Alessandra
dc.contributor.authorFeidt, Anne
dc.date.accessioned2016-05-23T17:42:23Z
dc.date.available2019-06-28T08:24:03Z
dc.date.issued2015
dc.description.abstractWe use the Stein-Chen method to study the extremal behaviour of the problem of extremes for univariate and bivariate geometric laws. We obtain a rate for the convergence to the Gumbel distribution of the law of the maximum of i. i. d. geometric random variables, and show that convergence is faster when approximating by a discretised Gumbel. We similarly find a rate of convergence for the law of maxima of bivariate Marshall-Olkin geometric random pairs when approximating by a discrete limit law. We introduce marked point processes of exceedances (MPPEs), both with univariate and bivariate Marshall-Olkin geometric variables as marks and we determine bounds on the error of the approximation, in an appropriate probability metric, of the law of the MPPE by that of a Poisson process with same mean measure. We then approximate by another Poisson process with an easier-to-use mean measure and estimate the error of this additional approximation. This work contains and extends results contained in the second author's PhD thesis (available at arXiv:1310.2564) under the supervision of Andrew D. Barbour.
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3388
dc.language.isoengeng
dc.publisherCambridge : arXiv
dc.relation.urihttp://arxiv.org/abs/1503.09160
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.subject.ddc510
dc.subject.otherProbabilityeng
dc.titleRates of convergence for extremes of geometric random variables and marked point processes
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections