Analysis, Geometry and Topology of Positive Scalar Curvature Metrics

dc.bibliographicCitation.journalTitleOberwolfach reports : OWR
dc.bibliographicCitation.volume9
dc.contributor.otherAmmann, Bernd
dc.contributor.otherHanke, Bernhard
dc.contributor.otherSakovich, Anna
dc.date.accessioned2024-10-18T09:49:44Z
dc.date.available2024-10-18T09:49:44Z
dc.date.issued2024
dc.description.abstractRiemannian metrics with positive scalar curvature play an important role in differential geometry and general relativity. To investigate these metrics, it is necessary to employ concepts and techniques from global analysis, geometric topology, metric geometry, index theory, and general relativity. This workshop brought together researchers from a variety of backgrounds to combine their expertise and promote cross-disciplinary exchange.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/17136
dc.identifier.urihttps://doi.org/10.34657/16158
dc.language.isoeng
dc.publisherZürich : EMS Publ. House
dc.relation.doihttps://doi.org/10.4171/OWR/2024/9
dc.relation.essn1660-8941
dc.relation.issn1660-8933
dc.rights.licenseCC BY-SA 4.0 Unported
dc.rights.licensehttps://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc510
dc.subject.gndKonferenzschrift
dc.titleAnalysis, Geometry and Topology of Positive Scalar Curvature Metrics
dc.typeArticle
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.4171-owr-2024-9.pdf
Size:
893.83 KB
Format:
Adobe Portable Document Format
Description: