Corrector estimates for a thermo-diffusion model with weak thermal coupling
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
The present work deals with the derivation of corrector estimates for the two-scale homogenization of a thermo-diffusion model with weak thermal coupling posed in a heterogeneous medium endowed with periodically arranged high-contrast microstructures. The terminology weak thermal coupling refers here to the variable scaling in terms of the small homogenization parameter " of the heat conduction diffusion interaction terms, while the high-contrast is thought particularly in terms of the heat conduction properties of the composite material. As main target, we justify the first-order terms of the multiscale asymptotic expansions in the presence of coupled fluxes, induced by the joint contribution of Sorret and Dufour-like effects. The contrasting heat conduction combined with cross coupling lead to the main mathematical difficulty in the system. Our approach relies on the method of periodic unfolding combined with -independent estimates for the thermal and concentration fields and for their coupled fluxes.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.