The algebra of differential operators for a Gegenbauer weight matrix

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2015-07
dc.contributor.authorZurrián, Ignacio Nahuel
dc.date.available2019-06-28T08:12:25Z
dc.date.issued2015
dc.description.abstractIn this work we study in detail the algebra of differential operators D(W) associated with a Gegenbauer matrix weight. We prove that two second order operators generate the algebra, indeed D(W) is isomorphic to the free algebra generated by two elements subject to certain relations. Also, the center is isomorphic to the affine algebra of a singular rational curve. The algebra D(W) is a finitely-generated torsion-free module over its center, but it is not at and therefore neither projective. After [Tir11], this is the second detailed study of an algebra D(W) and the first one coming from spherical functions and group representation theory.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3331
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2868
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2015-07
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherMatrix Orthogonal Polynomialseng
dc.subject.otherMatrix Differential Operatorseng
dc.subject.otherBispectral Problemeng
dc.subject.otherDifferential Operators Algebraeng
dc.titleThe algebra of differential operators for a Gegenbauer weight matrixeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2015_07.pdf
Size:
382.94 KB
Format:
Adobe Portable Document Format
Description: