Simulation of forward-reverse stochastic representations for conditional diffusions

No Thumbnail Available
Date
2013
Volume
Issue
Journal
The annals of applied probability
Series Titel
Book Title
Publisher
Bethesda : Institute of Mathematical Statistics
Link to publishers version
Abstract

In this paper we derive stochastic representations for the finite dimensional distributions of a multidimensional diffusion on a fixed time interval, conditioned on the terminal state. The conditioning can be with respect to a fixed point or more generally with respect to some subset. The representations rely on a reverse process connected with the given (forward) diffusion as introduced in Milstein, Schoenmakers and Spokoiny [Bernoulli 10 (2004) 281-312] in the context of a forward-reverse transition density estimator. The corresponding Monte Carlo estimators have essentially root-N accuracy, and hence they do not suffer from the curse of dimensionality. We provide a detailed convergence analysis and give a numerical example involving the realized variance in a stochastic volatility asset model conditioned on a fixed terminal value of the asset.

Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.