From Betti numbers to ℓ²-Betti numbers

dc.bibliographicCitation.seriesTitleSnapshots of Modern Mathematics from Oberwolfacheng
dc.bibliographicCitation.volume1/2020
dc.contributor.authorKammeyer, Holger
dc.contributor.authorSauer, Roman
dc.date.accessioned2022-08-05T08:11:37Z
dc.date.available2022-08-05T08:11:37Z
dc.date.issued2020
dc.description.abstractWe provide a leisurely introduction to ℓ²-Betti numbers, which are topological invariants, by relating them to their much older cousins, Betti numbers. In the end we present an open research problem about ℓ²-Betti numbers.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/9925
dc.identifier.urihttp://dx.doi.org/10.34657/8963
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH
dc.relation.doihttps://doi.org/10.14760/SNAP-2020-001-EN
dc.relation.essn2626-1995
dc.rights.licenseCC BY-SA 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/eng
dc.subject.ddc510
dc.subject.otherGeometry and Topologyeng
dc.titleFrom Betti numbers to ℓ²-Betti numberseng
dc.typeReporteng
dc.typeTexteng
dcterms.extent11 S.
tib.accessRightsopenAccess
wgl.contributorMFO
wgl.subjectMathematik
wgl.typeReport / Forschungsbericht / Arbeitspapier
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020-01.pdf
Size:
461.52 KB
Format:
Adobe Portable Document Format
Description: