Thermalization by a synthetic horizon

Loading...
Thumbnail Image
Date
2022
Volume
4
Issue
4
Journal
Physical review research
Series Titel
Book Title
Publisher
College Park, MD : APS
Abstract

Synthetic horizons in models for quantum matter provide an alternative route to explore fundamental questions of modern gravitational theory. Here we apply these concepts to the problem of emergence of thermal quantum states in the presence of a horizon, by studying ground-state thermalization due to instantaneous horizon creation in a gravitational setting and its condensed matter analog. By a sudden quench to position-dependent hopping amplitudes in a one-dimensional lattice model, we establish the emergence of a thermal state accompanying the formation of a synthetic horizon. The resulting temperature for long chains is shown to be identical to the corresponding Unruh temperature, provided that the postquench Hamiltonian matches the entanglement Hamiltonian of the prequench system. Based on detailed analysis of the outgoing radiation we formulate the conditions required for the synthetic horizon to behave as a purely thermal source, paving a way to explore this interplay of quantum-mechanical and gravitational aspects experimentally.

Description
Keywords
Gravitation, Ground state, Quantum entanglement, Quantum optics
Citation
Mertens, L., Moghaddam, A. G., Chernyavsky, D., Morice, C., van den Brink, J., & van Wezel, J. (2022). Thermalization by a synthetic horizon. 4(4). https://doi.org//10.1103/PhysRevResearch.4.043084
Collections
License
CC BY 4.0 Unported