Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping

dc.bibliographicCitation.firstPagee1901406eng
dc.bibliographicCitation.issue27eng
dc.bibliographicCitation.volume15eng
dc.contributor.authorTondera, Christoph
dc.contributor.authorAkbar, Teuku Fawzul
dc.contributor.authorThomas, Alvin Kuriakose
dc.contributor.authorLin, Weilin
dc.contributor.authorWerner, Carsten
dc.contributor.authorBusskamp, Volker
dc.contributor.authorZhang, Yixin
dc.contributor.authorMinev, Ivan R.
dc.date.accessioned2021-12-15T08:20:25Z
dc.date.available2021-12-15T08:20:25Z
dc.date.issued2019
dc.description.abstractElectrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/7754
dc.identifier.urihttps://doi.org/10.34657/6801
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/smll.201901406
dc.relation.essn1613-6829
dc.relation.ispartofseriesSmall : nano micro 15 (2019), Nr. 27eng
dc.rights.licenseCC BY-NC 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/eng
dc.subject3D printingeng
dc.subjectbioelectronicseng
dc.subjectconductive polymerseng
dc.subjectinduced pluripotent stem cellseng
dc.subjectinterpenetrating networkeng
dc.subject.ddc570eng
dc.subject.ddc620eng
dc.titleHighly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Dopingeng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleSmall : nano microeng
tib.accessRightsopenAccesseng
wgl.contributorIPFeng
wgl.subjectBiowissensschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description: