Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube

dc.bibliographicCitation.firstPage1904315eng
dc.bibliographicCitation.issue49eng
dc.bibliographicCitation.journalTitleSmall : nano microeng
dc.bibliographicCitation.volume15eng
dc.contributor.authorLenz, Kilian
dc.contributor.authorNarkowicz, Ryszard
dc.contributor.authorWagner, Kai
dc.contributor.authorReiche, Christopher F.
dc.contributor.authorKörner, Julia
dc.contributor.authorSchneider, Tobias
dc.contributor.authorKákay, Attila
dc.contributor.authorSchultheiss, Helmut
dc.contributor.authorWeissker, Uhland
dc.contributor.authorWolf, Daniel
dc.contributor.authorSuter, Dieter
dc.contributor.authorBüchner, Bernd
dc.contributor.authorFassbender, Jürgen
dc.contributor.authorMühl, Thomas
dc.contributor.authorLindner, Jürgen
dc.date.accessioned2021-08-30T06:05:18Z
dc.date.available2021-08-30T06:05:18Z
dc.date.issued2019
dc.description.abstractThe magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimeng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6622
dc.identifier.urihttps://doi.org/10.34657/5669
dc.language.isoengeng
dc.publisherWeinheim : Wiley-VCHeng
dc.relation.doihttps://doi.org/10.1002/smll.201904315
dc.relation.essn1613-6829
dc.relation.issn1613-6810
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subject.ddc570eng
dc.subject.ddc620eng
dc.subject.otherBrillouin scatteringeng
dc.subject.otherCarbon nanotubeseng
dc.subject.otherChemical vapor depositioneng
dc.subject.otherCrystalline materialseng
dc.subject.otherFerromagnetic materialseng
dc.subject.otherFerromagnetic resonanceeng
dc.subject.otherFerromagnetismeng
dc.subject.otherIroneng
dc.subject.otherMagnetizationeng
dc.subject.otherNanotubeseng
dc.subject.otherNanowireseng
dc.subject.otherSpin waveseng
dc.subject.otherBrillouin light scatteringeng
dc.subject.otherFerromagnetic resonance (FMR)eng
dc.subject.otherFerromagnetic resonance lineseng
dc.subject.otherFilled carbon nanotubeseng
dc.subject.otherMagnetization dynamicseng
dc.subject.otherMagnetometry measurementseng
dc.subject.otherMicro magnetismseng
dc.subject.otherMicromagnetic simulationseng
dc.subject.otherMultiwalled carbon nanotubes (MWCN)eng
dc.titleMagnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotubeeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorIFWDeng
wgl.subjectBiowissensschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube.pdf
Size:
867.63 KB
Format:
Adobe Portable Document Format
Description: