Maximal convergence theorems for functions of squared modulus holomorphic type and various applications
Date
Authors
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
In this paper we extend the theory of maximal convergence introduced by Walsh to functions of squared modulus holomorphic type. We introduce in accordance to the well-known complex maximal convergence number for holomorphic functions a real maximal convergence number for functions of squared modulus holomorphic type and prove several maximal convergence theorems. We achieve that the real maximal convergence number for F is always greater or equal than the complex maximal convergence number for g and equality occurs if L is a closed disk in R^2. Among other various applications of the resulting approximation estimates we show that for functions F of squared holomorphic type which have no zeros in a closed disk B_r the relation limsupntoinftysqrt[n]En(Br,F)=limsupntoinftysqrt[n]En(partialBr,F) is valid, where E_n is the polynomial approximation error.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.