Maximal convergence theorems for functions of squared modulus holomorphic type and various applications

Loading...
Thumbnail Image

Date

Volume

1175

Issue

Journal

Series Titel

WIAS Preprints

Book Title

Publisher

Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik

Link to publishers version

Abstract

In this paper we extend the theory of maximal convergence introduced by Walsh to functions of squared modulus holomorphic type. We introduce in accordance to the well-known complex maximal convergence number for holomorphic functions a real maximal convergence number for functions of squared modulus holomorphic type and prove several maximal convergence theorems. We achieve that the real maximal convergence number for F is always greater or equal than the complex maximal convergence number for g and equality occurs if L is a closed disk in R^2. Among other various applications of the resulting approximation estimates we show that for functions F of squared holomorphic type which have no zeros in a closed disk B_r the relation limsupntoinftysqrt[n]En(Br,F)=limsupntoinftysqrt[n]En(partialBr,F) is valid, where E_n is the polynomial approximation error.

Description

Keywords

License

This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.