Right simple singularities in positive characteristic

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2013-28
dc.contributor.authorGreuel, Gert-Martin
dc.contributor.authorDuc, Nguyen Hong
dc.date.available2019-06-28T08:10:46Z
dc.date.issued2013
dc.description.abstractWe classify isolated singularities f∈K[[x1,...,xn]], which are simple, i.e. have no moduli, w.r.t. right equivalence, where K is an algebraically closed field of characteristic p>0. For K=R or C this classification was initiated by Arnol'd, resulting in the famous ADE-series. The classification w.r.t. contact equivalence for p>0 was done by Greuel and Kröning with a result similiar to Arnol'd's. It is surprising that w.r.t. right equivalence and any given p>0 we have only finitely many simple singularities, i.e. there are only finitely many k such that Ak and Dk are right simple, all the others have moduli. A major point of this paper is the generalization of the notion of modality to the algebraic setting, its behaviour under morphisms, and its relations to formal deformation theory. As an application we show that the modality is semicontinuous in any characteristic.
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/3109
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2764
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2013-28
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510
dc.titleRight simple singularities in positive characteristic
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2013_28.pdf
Size:
446.39 KB
Format:
Adobe Portable Document Format
Description: