Experimenting with Zariski dense subgroups
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2017-31 | |
dc.contributor.author | Detinko, Alla | |
dc.contributor.author | Flannery, Dane | |
dc.contributor.author | Hulpke, Alexander | |
dc.date.accessioned | 2017-11-24T21:32:57Z | |
dc.date.available | 2019-06-28T08:08:09Z | |
dc.date.issued | 2017 | |
dc.description.abstract | We give a method to describe all congruence images of a finitely generated Zariski dense group H< SL(n; Z). The method is applied to obtain efficient algorithms for solving this problem in odd prime degree n; if n = 2 then we compute all congruence images only modulo primes. We propose a separate method that works for all n as long as H contains a known transvection. The algorithms have been implemented in GAP, enabling computer experiments with important classes of linear groups that have recently emerged. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/2345 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2559 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2017-31 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | Experimenting with Zariski dense subgroups | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2017_31.pdf
- Size:
- 351.09 KB
- Format:
- Adobe Portable Document Format
- Description: