Inductive freeness of Ziegler’s canonical multiderivations for reflection arrangements

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2017-14
dc.contributor.authorHoge, Torsten
dc.contributor.authorRöhrle, Gerhard
dc.date.available2019-06-28T08:09:38Z
dc.date.issued2017
dc.description.abstractLet A be a free hyperplane arrangement. In 1989, Ziegler showed that the restriction A 00 of A to any hyperplane endowed with the natural multiplicity is then a free multiarrangement. We initiate a study of the stronger freeness property of inductive freeness for these canonical free multiarrangements and investigate them for the underlying class of re ection arrangements. More precisely, let A = A (W) be the re ection arrangement of a complex re ection group W. By work of Terao, each such re ection arrangement is free. Thus so is Ziegler's canonical multiplicity on the restriction A 00 of A to a hyperplane. We show that the latter is inductively free as a multiarrangement if and only if A 00 itself is inductively free.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2554
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2664
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2017-14
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleInductive freeness of Ziegler’s canonical multiderivations for reflection arrangementseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2017_14.pdf
Size:
434.82 KB
Format:
Adobe Portable Document Format
Description: