Learning supervised PageRank with gradient-free optimization methods

dc.contributor.authorBogolubsky, Lev
dc.contributor.authorDvurechensky, Pavel
dc.contributor.authorGasnikov, Alexander
dc.contributor.authorGusev, Gleb
dc.contributor.authorNesterov, Yurii
dc.contributor.authorRaigorodskii, Andrey
dc.contributor.authorTikhonov, Aleksey
dc.contributor.authorZhukovskii, Maxim
dc.date.accessioned2016-06-15T17:44:29Z
dc.date.available2019-06-28T08:10:03Z
dc.date.issued2014
dc.description.abstractIn this paper, we consider a problem of learning supervised PageRank models, which can account for some properties not considered by classical approaches such as the classical PageRank algorithm. Due to huge hidden dimension of the optimization problem we use random gradient-free methods to solve it. We prove a convergence theorem and estimate the number of arithmetic operations needed to solve it with a given accuracy. We find the best settings of the gradient-free optimization method in terms of the number of arithmetic operations needed to achieve given accuracy of the objective. In the paper, we apply our algorithm to the web page ranking problem. We consider a parametric graph model of users' behavior and evaluate web pages' relevance to queries by our algorithm. The experiments show that our optimization method outperforms the untuned gradient-free method in the ranking quality.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2700
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1411.4282
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherOptimization and Controleng
dc.titleLearning supervised PageRank with gradient-free optimization methodseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections