Seasonal prediction of Indian summer monsoon onset with echo state networks

dc.bibliographicCitation.firstPage074024
dc.bibliographicCitation.issue7
dc.bibliographicCitation.journalTitleEnvironmental research letters : ERLeng
dc.bibliographicCitation.volume16
dc.contributor.authorMitsui, Takahito
dc.contributor.authorBoers, Niklas
dc.date.accessioned2022-12-02T09:19:52Z
dc.date.available2022-12-02T09:19:52Z
dc.date.issued2021-7-1
dc.description.abstractAlthough the prediction of the Indian Summer Monsoon (ISM) onset is of crucial importance for water-resource management and agricultural planning on the Indian sub-continent, the long-term predictability—especially at seasonal time scales—is little explored and remains challenging. We propose a method based on artificial neural networks that provides skilful long-term forecasts (beyond 3 months) of the ISM onset, although only trained on short and noisy data. It is shown that the meridional tropospheric temperature gradient in the boreal winter season already contains the signals needed for predicting the ISM onset in the subsequent summer season. Our study demonstrates that machine-learning-based approaches can be simultaneously helpful for both data-driven prediction and enhancing the process understanding of climate phenomena.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/10483
dc.identifier.urihttp://dx.doi.org/10.34657/9519
dc.language.isoeng
dc.publisherBristol : IOP Publ.
dc.relation.doihttps://doi.org/10.1088/1748-9326/ac0acb
dc.relation.essn1748-9326
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc690
dc.subject.otherartificial neural networkeng
dc.subject.otherecho state networkeng
dc.subject.otherIndian Summer monsoon onseteng
dc.subject.otherseasonal predictioneng
dc.titleSeasonal prediction of Indian summer monsoon onset with echo state networkseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorPIK
wgl.subjectUmweltwissenschaftenger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seasonal_prediction.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description: