Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2015-04 | |
dc.contributor.author | Genovese, Giuseppe | |
dc.contributor.author | Lucà, Renato | |
dc.contributor.author | Valeri, Daniele | |
dc.date.available | 2019-06-28T08:12:26Z | |
dc.date.issued | 2015 | |
dc.description.abstract | We study the one dimensional periodic derivative nonlinear Schrödinger (DNLS) equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion R hk, k 2 Z+. In each R h2k the term with the highest regularity involves the Sobolev norm _H k(T) of the solution of the DNLS equation. We show that a functional measure on L2(T), absolutely continuous w.r.t. the Gaussian measure with covariance (I + ()k) 1, is associated to each integral of motion R h2k, k 1. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/2419 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2869 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2015-04 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.title | Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2015_04.pdf
- Size:
- 678.13 KB
- Format:
- Adobe Portable Document Format
- Description: