Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equation

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2015-04
dc.contributor.authorGenovese, Giuseppe
dc.contributor.authorLucà, Renato
dc.contributor.authorValeri, Daniele
dc.date.available2019-06-28T08:12:26Z
dc.date.issued2015
dc.description.abstractWe study the one dimensional periodic derivative nonlinear Schrödinger (DNLS) equation. This is known to be a completely integrable system, in the sense that there is an infinite sequence of formal integrals of motion R hk, k 2 Z+. In each R h2k the term with the highest regularity involves the Sobolev norm _H k(T) of the solution of the DNLS equation. We show that a functional measure on L2(T), absolutely continuous w.r.t. the Gaussian measure with covariance (I + ()k) 1, is associated to each integral of motion R h2k, k 1.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2419
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2869
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2015-04
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.titleGibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrödinger equationeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2015_04.pdf
Size:
678.13 KB
Format:
Adobe Portable Document Format
Description: