Graph immersions with parallel cubic form

dc.contributor.authorHildebrand, Roland
dc.date.accessioned2016-12-16T22:47:12Z
dc.date.available2019-06-28T08:21:35Z
dc.date.issued2013
dc.description.abstractWe consider non-degenerate graph immersions in R^(n+1) whose cubic form is parallel with respect to the Levi-Civita connection of the affine metric. There exists a correspondence between such graph immersions and pairs (J,g), where J is an n-dimensional real Jordan algebra and g is a non-degenerate trace form on J. Every graph immersion with parallel cubic form can be extended to an affine complete hypersurface immersion which is locally a graph immersion with parallel cubic form. This affine complete immersion is a homogeneous locally symmetric space covering the maximal connected component of zero in the set of quasi-regular elements in the algebra J. It is an improper affine hypersphere if and only if the corresponding Jordan algebra is nilpotent. In this case it is an affine complete, Euclidean complete graph immersion, with the defining function being a polynomial. Our approach can be used to study also other classes of hypersurfaces with parallel cubic form.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/3295
dc.language.isoengeng
dc.publisherCambridge : arXiveng
dc.relation.urihttp://arxiv.org/abs/1302.1434
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherAffine differential geometryeng
dc.subject.otherparallel cubic formeng
dc.subject.otherJordan algebraseng
dc.titleGraph immersions with parallel cubic formeng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorWIASeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Collections