Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary

Loading...
Thumbnail Image

Date

Volume

6

Issue

Journal

Series Titel

Oberwolfach Preprints (OWP)

Book Title

Publisher

Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach

Link to publishers version

Abstract

We consider a domain Ωε⊂Rⁿ, N≥2, with a very rough boundary depending on ~ε. For instance, if N=3 the domain Ωε has the form of a brush with an ε-periodic distribution of thin cylinders with fixed height and a small diameter of order ε. In Ωε a nonlinear monotone problem with nonlinear Signorini boundary conditions, depending on ε, on the lateral boundary of the cylinders is considered. We study the asymptotic behavior of this problem, as ε vanishes, i.e. when the number of thin attached cylinders increases unboundedly, while their cross sections tend to zero. We identify the limit problem which is a nonstandard homogenized problem. Namely, in the region filled up by the thin cylinders the limit problem is given by a variational inequality coupled to an algebraic system.

Description

Keywords

License

Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.