On the Gauss Algebra of Toric Algebras

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume7
dc.contributor.authorHerzog, Jürgen
dc.contributor.authorJafari, Raheleh
dc.contributor.authorNasrollah Nejad, Abbas
dc.date.accessioned2024-10-16T15:05:26Z
dc.date.available2024-10-16T15:05:26Z
dc.date.issued2018
dc.description.abstractLet A be a K-subalgebra of the polynomial ring S=K[x₁,…,xd] of dimension d, generated by finitely many monomials of degree r. Then the Gauss algebra G(A) of A is generated by monomials of degree (r−1)d in S. We describe the generators and the structure of G(A), when A is a Borel fixed algebra, a squarefree Veronese algebra, generated in degree 2, or the edge ring of a bipartite graph with at least one loop. For a bipartite graph G with one loop, the embedding dimension of G(A) is bounded by the complexity of the graph G.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16896
dc.identifier.urihttps://doi.org/10.34657/15918
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2018-07
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherGauss mapeng
dc.subject.otherGauss algebraeng
dc.subject.otherBirational morphismeng
dc.subject.otherBorel fixed algebraeng
dc.subject.otherSquarefree Veronese algebraeng
dc.subject.otherEdge ringeng
dc.titleOn the Gauss Algebra of Toric Algebras
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2018_07.pdf
Size:
400.55 KB
Format:
Adobe Portable Document Format
Description: