Characterization of antimicrobial effects of Plasma-Treated Water (PTW) produced by Microwave-Induced Plasma (MidiPLexc) on pseudomonas fluorescens biofilms
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
For the decontamination of surfaces in the food production industry, plasma-generated compounds such as plasma-treated water or plasma-processed air offer many promising possibilities for future applications. Therefore, the antimicrobial effect of water treated with microwave-induced plasma (MidiPLexc) on Pseudomonas fluorescens biofilms was investigated. A total of 10 mL deionized water was treated with the MidiPLexc plasma source for 100, 300 and 900 s (pretreatment time) and the bacterial biofilms were exposed to the plasma-treated water for 1, 3 and 5 min (post-treatment time). To investigate the influence of plasma-treated water on P. fluorescens biofilms, microbiological assays (colony-forming units, fluorescence and XTT assay) and imaging techniques (fluorescence microscopy, confocal laser scanning microscopy, and atomic force microscopy) were used. The colony-forming units showed a maximum reduction of 6 log10 by using 300 s pretreated plasma water for 5 min. Additionally, a maximum reduction of 81% for the viability of the cells and a 92% reduction in the metabolic activity of the cells were achieved by using 900 s pretreated plasma water for 5 min. The microscopic images showed evident microbial inactivation within the biofilm even at the shortest pretreatment (100 s) and post-treatment (1 min) times. Moreover, reduction of the biofilm thickness and increased cluster formation within the biofilm was detected. Morphologically, the fusion of cell walls into a uniform dense cell mass was detectable. The findings correlated with a decrease in the pH value of the plasma-treated water, which forms the basis for the chemically active components of plasma-treated water and its antimicrobial effects. These results provide valuable insights into the mechanisms of inactivation of biofilms by plasma-generated compounds such as plasma-treated water and thus allow for further parameter adjustment for applications in food industry. © 2020 by the authors.