On Co-Minimal Pairs in Abelian Groups

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)
dc.bibliographicCitation.volume19
dc.contributor.authorBiswas, Arindam
dc.contributor.authorSaha, Jyoti Prakash
dc.date.accessioned2024-10-16T16:43:27Z
dc.date.available2024-10-16T16:43:27Z
dc.date.issued2019
dc.description.abstractA pair of non-empty subsets (W,W′) in an abelian group G is a complement pair if W+W′=G. W′ is said to be minimal to W if W+(W′∖{w′})≠G,∀w′∈W′. In general, given an arbitrary subset in a group, the existence of minimal complement(s) depends on its structure. The dual problem asks that given such a set, if it is a minimal complement to some subset. We study tightness property of complement pairs (W,W′) such that both W and W′ are minimal to each other. These are termed co-minimal pairs and we show that any non-empty finite set in an arbitrary free abelian group belongs to some co-minimal pair. We also construct infinite sets forming co-minimal pairs. Finally, we remark that a result of Kwon on the existence of minimal self-complements in Z, also holds in any abelian group.
dc.description.versionpublishedVersion
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/16910
dc.identifier.urihttps://doi.org/10.34657/15932
dc.language.isoeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfach
dc.relation.doihttps://doi.org/10.14760/OWP-2019-19
dc.relation.issn1864-7596
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
dc.subject.ddc510
dc.subject.otherAdditive complements
dc.subject.otherMinimal complements
dc.subject.otherSunsets
dc.subject.otherAdditive number theory
dc.titleOn Co-Minimal Pairs in Abelian Groups
dc.typeReport
dc.typeText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2019_19.pdf
Size:
448.23 KB
Format:
Adobe Portable Document Format
Description: