A potential reduction algorithm for two-person zero-sum mean payoff stochastic games
Date
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Link to publishers version
Abstract
We suggest a new algorithm for two-person zero-sum undiscounted stochastic games focusing on stationary strategies. Given a positive real , let us call a stochastic game -ergodic, if its values from any two initial positions dier by at most . The proposed new algorithm outputs for every > 0 in nite time either a pair of stationary strategies for the two players guaranteeing that the values from any initial positions are within an -range, or identies two initial positions u and v and corresponding stationary strategies for the players proving that the game values starting from u and v are at least =24 apart. In particular, the above result shows that if a stochastic game is -ergodic, then there are stationary strategies for the players proving 24-ergodicity. This result strengthens and provides a constructive version of an existential result by Vrieze (1980) claiming that if a stochastic game is 0-ergodic, then there are -optimal stationary strategies for every > 0. The suggested algorithm is based on a potential transformation technique that changes the range of local values at all positions without changing the normal form of the game.
Description
Keywords
Collections
License
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.