Supertropical quadratic forms I
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2013-27 | |
dc.contributor.author | Izhakian, Zur | |
dc.contributor.author | Knebusch, Manfred | |
dc.contributor.author | Rowen, Louis | |
dc.date.available | 2019-06-28T08:10:47Z | |
dc.date.issued | 2013 | |
dc.description.abstract | We initiate the theory of a quadratic form q over a semiring R. As customary, one can write q(x+y)=q(x)+q(y)+b(x,y), where b is a companion bilinear form. But in contrast to the ring-theoretic case, the companion bilinear form need not be uniquely defined. Nevertheless, q can always be written as a sum of quadratic forms q=κ+ρ, where κ is quasilinear in the sense that κ(x+y)=κ(x)+κ(y), and ρ is rigid in the sense that it has a unique companion. In case that R is a supersemifield (cf. Definition 4.1 below) and q is defined on a free R-module, we obtain an explicit classification of these decompositions q=κ+ρ and of all companions b of q. As an application to tropical geometry, given a quadratic form q:V→R on a free module V over a commutative ring R and a supervaluation ρ: R→U with values in a supertropical semiring [5], we define - after choosing a base L=(vi|i∈I) of V- a quadratic form qφ:U(I)→U on the free module U(I) over the semiring U. The analysis of quadratic forms over a supertropical semiring enables one to measure the “position” of q with respect to L via φ. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/3316 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2765 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2013-27 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Tropical algebra | eng |
dc.subject.other | supertropical modules | eng |
dc.subject.other | bilinear forms | eng |
dc.subject.other | quadratic forms | eng |
dc.subject.other | quadratic pairs | eng |
dc.subject.other | supertropicalization | eng |
dc.title | Supertropical quadratic forms I | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2013_27.pdf
- Size:
- 258.74 KB
- Format:
- Adobe Portable Document Format
- Description: