Integrability of (non-)linear rough differential equations and integrals

No Thumbnail Available
Date
2011
Volume
Issue
Journal
Series Titel
Book Title
Publisher
Cambridge : arXiv
Link to publishers version
Abstract

Integrability properties of (classical, linear, linear growth) rough differential equations (RDEs) are considered, the Jacobian of the RDE flow driven by Gaussian signals being a motivating example. We revisit and extend some recent ground-breaking work of Cass-Litterer-Lyons in this regard; as by-product, we obtain a user-friendly "transitivity property" of such integrability estimates. We also consider rough integrals; as a novel application, uniform Weibull tail estimates for a class of (random) rough integrals are obtained. A concrete example arises from the stochastic heat-equation, spatially mollified by hyper-viscosity, and we can recover (in fact: sharpen) a technical key result of [Hairer, Comm.PureAppl.Math.64,no.11,(2011),1547-1585].

Description
Keywords
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.