Strategy for optimizing experimental settings for studying low atomic number colloidal assemblies using liquid phase scanning transmission electron microscopy

dc.bibliographicCitation.firstPage113596
dc.bibliographicCitation.journalTitleUltramicroscopyeng
dc.bibliographicCitation.volume240
dc.contributor.authorKunnas, Peter
dc.contributor.authorMoradi, Mohammad-Amin
dc.contributor.authorSommerdijk, Nico
dc.contributor.authorde Jonge, Niels
dc.date.accessioned2023-02-24T06:43:45Z
dc.date.available2023-02-24T06:43:45Z
dc.date.issued2022
dc.description.abstractObserving processes of nanoscale materials of low atomic number is possible using liquid phase electron microscopy (LP-EM). However, the achievable spatial resolution (d) is limited by radiation damage. Here, we examine a strategy for optimizing LP-EM experiments based on an analytical model and experimental measurements, and develop a method for quantifying image quality at ultra low electron dose De using scanning transmission electron microscopy (STEM). As experimental test case we study the formation of a colloidal binary system containing 30 nm diameter SiO2 nanoparticles (SiONPs), and 100 nm diameter polystyrene microspheres (PMs). We show that annular dark field (DF) STEM is preferred over bright field (BF) STEM for practical reasons. Precise knowledge of the material's density is crucial for the calculations in order to match experimental data. To calculate the detectability of nano-objects in an image, the Rose criterion for single pixels is expanded to a model of the signal to noise ratio obtained for multiple pixels spanning the image of an object. Using optimized settings, it is possible to visualize the radiation-sensitive, hierarchical low-Z binary structures, and identify both components.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11505
dc.identifier.urihttp://dx.doi.org/10.34657/10539
dc.language.isoeng
dc.publisherAmsterdam : Elsevier Science
dc.relation.doihttps://doi.org/10.1016/j.ultramic.2022.113596
dc.relation.essn1879-2723
dc.relation.issn0304-3991
dc.rights.licenseCC BY-NC-ND 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570
dc.subject.otherAtomic numberseng
dc.subject.otherColloidal assemblyeng
dc.subject.otherElectron doseeng
dc.subject.otherExperimental testeng
dc.subject.otherLiquid Phaseeng
dc.subject.otherLiquid phasiseng
dc.subject.otherNanoscale materialeng
dc.subject.otherPhase electron microscopyeng
dc.subject.otherScanning transmission electron microscopyeng
dc.subject.otherSpatial resolutioneng
dc.titleStrategy for optimizing experimental settings for studying low atomic number colloidal assemblies using liquid phase scanning transmission electron microscopyeng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorINM
wgl.subjectBiowissenschaften/Biologieger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Strategy_for_optimizing_experimental_settings.pdf
Size:
5.3 MB
Format:
Adobe Portable Document Format
Description: