Cryptanalysis of public-key cryptosystems based on algebraic geometry codes
dc.bibliographicCitation.seriesTitle | Oberwolfach Preprints (OWP) | eng |
dc.bibliographicCitation.volume | 2012-01 | |
dc.contributor.author | Márquez-Corbella, Irene | |
dc.contributor.author | Martínez-Moro, Edgar | |
dc.contributor.author | Pellikaan, Ruud | |
dc.date.available | 2019-06-28T08:03:33Z | |
dc.date.issued | 2012 | |
dc.description.abstract | This paper addresses the question of retrieving the triple (X,P,E) from the algebraic geometry code CL(X,P,E), where X is an algebraic curve over the finite field Fq,P is an n-tuple of Fq-rational points on X and E is a divisor on X. If deg(E) ≥2g+1 where g is the genus of X, then there is an embedding of X onto Y in the projective space of the linear series of the divisor E. Moreover, if deg(E) ≥2g+2, then I(Y), the vanishing ideal of Y, is generated by I2(Y), the homogeneous elements of degree two in I(Y). If n>2 deg(E), then I2(Y)=I2(Q), where Q is the image of P under the map from X to Y. These two results imply that certain algebraic geometry codes are not secure if used in the McEliece public-key cryptosystem. | eng |
dc.description.version | publishedVersion | eng |
dc.format | application/pdf | |
dc.identifier.issn | 1864-7596 | |
dc.identifier.uri | https://doi.org/10.34657/2187 | |
dc.identifier.uri | https://oa.tib.eu/renate/handle/123456789/2058 | |
dc.language.iso | eng | eng |
dc.publisher | Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach | eng |
dc.relation.doi | https://doi.org/10.14760/OWP-2012-01 | |
dc.rights.license | This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties. | eng |
dc.rights.license | Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. | ger |
dc.subject.ddc | 510 | eng |
dc.subject.other | Algebraic geometry codes | eng |
dc.subject.other | public-key cryptosystems | eng |
dc.title | Cryptanalysis of public-key cryptosystems based on algebraic geometry codes | eng |
dc.type | Report | eng |
dc.type | Text | eng |
tib.accessRights | openAccess | eng |
wgl.contributor | MFO | eng |
wgl.subject | Mathematik | eng |
wgl.type | Report / Forschungsbericht / Arbeitspapier | eng |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- OWP2012_01.pdf
- Size:
- 392.67 KB
- Format:
- Adobe Portable Document Format
- Description: