Cryptanalysis of public-key cryptosystems based on algebraic geometry codes

dc.bibliographicCitation.seriesTitleOberwolfach Preprints (OWP)eng
dc.bibliographicCitation.volume2012-01
dc.contributor.authorMárquez-Corbella, Irene
dc.contributor.authorMartínez-Moro, Edgar
dc.contributor.authorPellikaan, Ruud
dc.date.available2019-06-28T08:03:33Z
dc.date.issued2012
dc.description.abstractThis paper addresses the question of retrieving the triple (X,P,E) from the algebraic geometry code CL(X,P,E), where X is an algebraic curve over the finite field Fq,P is an n-tuple of Fq-rational points on X and E is a divisor on X. If deg(E) ≥2g+1 where g is the genus of X, then there is an embedding of X onto Y in the projective space of the linear series of the divisor E. Moreover, if deg(E) ≥2g+2, then I(Y), the vanishing ideal of Y, is generated by I2(Y), the homogeneous elements of degree two in I(Y). If n>2 deg(E), then I2(Y)=I2(Q), where Q is the image of P under the map from X to Y. These two results imply that certain algebraic geometry codes are not secure if used in the McEliece public-key cryptosystem.eng
dc.description.versionpublishedVersioneng
dc.formatapplication/pdf
dc.identifier.issn1864-7596
dc.identifier.urihttps://doi.org/10.34657/2187
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/2058
dc.language.isoengeng
dc.publisherOberwolfach : Mathematisches Forschungsinstitut Oberwolfacheng
dc.relation.doihttps://doi.org/10.14760/OWP-2012-01
dc.rights.licenseThis document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.eng
dc.rights.licenseDieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.ger
dc.subject.ddc510eng
dc.subject.otherAlgebraic geometry codeseng
dc.subject.otherpublic-key cryptosystemseng
dc.titleCryptanalysis of public-key cryptosystems based on algebraic geometry codeseng
dc.typeReporteng
dc.typeTexteng
tib.accessRightsopenAccesseng
wgl.contributorMFOeng
wgl.subjectMathematikeng
wgl.typeReport / Forschungsbericht / Arbeitspapiereng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OWP2012_01.pdf
Size:
392.67 KB
Format:
Adobe Portable Document Format
Description: