Optoregulated force application to cellular receptors using molecular motors

dc.bibliographicCitation.firstPage3580eng
dc.bibliographicCitation.volume12eng
dc.contributor.authorZheng, Yijun
dc.contributor.authorHan, Mitchell K.L.
dc.contributor.authorZhao, Renping
dc.contributor.authorBlass, Johanna
dc.contributor.authorZhang, Jingnan
dc.contributor.authorZhou, Dennis W.
dc.contributor.authorColard-Itté, Jean-Rémy
dc.contributor.authorDattler, Damien
dc.contributor.authorÇolak, Arzu
dc.contributor.authorHoth, Markus
dc.contributor.authorGarcía, Andrés J.
dc.contributor.authorQu, Bin
dc.contributor.authorBennewitz, Roland
dc.contributor.authorGiuseppone, Nicolas
dc.contributor.authordel Campo, Aránzazu
dc.date.accessioned2021-07-06T05:47:13Z
dc.date.available2021-07-06T05:47:13Z
dc.date.issued2021
dc.description.abstractProgress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively “pull” on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/6217
dc.identifier.urihttps://doi.org/10.34657/5264
dc.language.isoengeng
dc.publisherLondon : Nature Publishing Groupeng
dc.relation.doihttps://doi.org/10.1038/s41467-021-23815-4
dc.relation.essn2041-1723
dc.relation.ispartofseriesNature Communications 12 (2021)eng
dc.rights.licenseCC BY 4.0 Unportedeng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/eng
dc.subjectMolecular machines and motorseng
dc.subjectNanoscale biophysicseng
dc.subject.ddc500eng
dc.titleOptoregulated force application to cellular receptors using molecular motorseng
dc.typearticleeng
dc.typeTexteng
dcterms.bibliographicCitation.journalTitleNature Communicationseng
tib.accessRightsopenAccesseng
wgl.contributorINMeng
wgl.subjectBiowissensschaften/Biologieeng
wgl.typeZeitschriftenartikeleng
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s41467-021-23815-4.pdf
Size:
2.06 MB
Format:
Adobe Portable Document Format
Description: